ОТНОШЕНИЯ

Что такое отношение площадей

Что такое отношение площадей

ПРОПОРЦИОНАЛЬНОСТЬ ОТРЕЗКОВ. ПОДОБИЕ ФИГУР.

§ 92. ОТНОШЕНИЕ ПЛОЩАДЕЙ ПОДОБНЫХ ФИГУР.

1. Отношение площадей квадратов.

Рассмотрим отношение площадей двух квадратов. Если сторону одного квадрата обозначим через т, а сторону другого — через п, то площади будут соответственно равны
т 2 и п 2 (черт. 379).

Обозначив площадь первого квадрата через S, а площадь второго через S’, получим: S /S’ = m 2 / n 2 , т. е. площади квадратов относятся как квадраты их сторон.

Полученную формулу можно преобразовать так: S /S’ = ( m /n) 2 .

Значит, можно сказать, что отношение площадей двух квадратов равно квадрату отношения их сторон.

На чертеже 379 отношение сторон квадратов равно 3, отношение их площадей равно
3 2 = 9.

2. Отношение площадей двух подобных треугольников.

Пусть /\ AВС /\ A’В’С’ (черт. 380). Из подобия треугольников следует, что
/ A = / A’ , / B = / B’ и / С = / С’ . Кроме того, AB /A’B’ = BC /B’C’ = AC /A’C’.

В этих треугольниках из вершин В и В’ проведём высоты и обозначим их через h и h‘. Площадь первого треугольника будет равна AC•h /2, а площадь второго треугольника A’C’•h’ /2.

Обозначив площадь первого треугольника через S, а площадь второго — через S’ получим: S /S’ = AC•h /A’C’•h’ или S /S’ = AC /A’C’h /h’

Из подобия треугольников АВО и А’В’О’ (они подобны, потому что прямоугольные, и, кроме того, имеют по равному острому углу, а именно / A = / A’ ) следует:
h
/h’ = AB /A’B’ . Но AB /A’B’ = AC /A’C’ . Следовательно, h /h’ = AC /A’C’. Заменив в формуле S /S’ = AC /A’C’h /h’ отношение h /h’ равным ему отношением AC /A’C’ , получим:
S /S’ = AC /A’C’ • AC /A’C’ , или .

Итак, площади подобных треугольников относятся как квадраты сходственных сторон.

Полученную формулу можно преобразовать так: S /S’ = ( AC /A’C’ ) 2 .

Значит, можно сказать, что отношение площадей двух подобных треугольников равно квадрату отношения их сходственных сторон.

3. Отношение площадей подобных многоугольников.

Пусть ABCDE и A’B’C’D’E’ — подобные многоугольники (черт. 381).

Известно, что /\ AВС /\ A’В’С’; /\ ACD /\ A’C’D’ и /\ ADE /\ A’D’E’ (§90).
Кроме того,

;

Так как вторые отнoшения этих пропорций равны, что вытекает из подобия многоугольников, то

Используя свойство ряда равных отношений получим:

, или

где S и S’ — площади данных подобных многоугольников.

Следовательно, площади подобных многоугольников относятся как квадраты сходственных сторон.

Полученную формулу можно преобразовать к такому виду: S /S’ = ( AВ /A’В’ ) 2

1. Сторона первого квадрата больше стороны второго квадрата в 2 раза (в 5 раз). Во сколько раз площадь первого квадрата больше площади второго квадрата?

2. Сторона первого квадрата составляет 1 /3 (0,1) стороны второго квадрата. Какую часть площадь первого квадрата составляет от площади второго квадрата?

3. Коэффициент подобия в подобных многоугольниках равен 4 ( 1 /5; 0,4; 2,5). Чему равно отношение их площадей?

4. Отношение площадей подобных многоугольников равно 36 (100; 0,09). Чему равно отношение сходственных сторон этих многоугольников?

Источник

Подобные треугольники

Определение

Подобные треугольники — треугольники, у которых углы соответственно равны, а стороны одного соответственно пропорциональны сторонам другого треугольника.

Коэффициентом подобия называют число k , равное отношению сходственных сторон подобных треугольников.

Сходственные (или соответственные) стороны подобных треугольников — стороны, лежащие напротив равных углов.

Признаки подобия треугольников

I признак подобия треугольников

Если два угла одного треугольника соответственно равны двум углам другого, то такие треугольники подобны.

II признак подобия треугольников

Если три стороны одного треугольника пропорциональны трем сторонам другого, то такие треугольники подобны.

Свойства подобных треугольников

  • Отношение площадей подобных треугольников равно квадрату коэффициента подобия.
  • Отношение периметров подобных треугольников равно коэффициенту подобия.
  • Отношение длин соответствующих элементов подобных треугольников (в частности, длин биссектрис, медиан, высот и серединных перпендикуляров) равно коэффициенту подобия.

Примеры наиболее часто встречающихся подобных треугольников

1. Прямая, параллельная стороне треугольника, отсекает от него треугольник, подобный данному.

2. Треугольники и , образованные отрезками диагоналей и основаниями трапеции, подобны. Коэффициент подобия –

3. В прямоугольном треугольнике высота, проведенная из вершины прямого угла, разбивает его на два треугольника, подобных исходному.

Здесь вы найдете подборку задач по теме «Подобные треугольники» .

Источник

Что такое отношение площадей

В элементарной математике, самыми трудными считаются геометрические задачи. Как научиться решать геометрические задачи, особенно сложные, конкурсные? При решении геометрических задач, как правило, алгоритмов нет, и выбирать наиболее подходящую к данному случаю теорему не просто. Поэтому, желательно в каждой теме выработать какие-то общие положения, которые полезно знать всякому решающему геометрические задачи.
Предлагаем один из алгоритмов решения многих геометрических задач – метод площадей, т.е. решение задач с использованием свойств площадей.

Основные свойства площадей.

Свойство №1

Если вершину треугольника передвигать по прямой, параллельной основанию, то площадь при этом не измениться.Доказательство: Рассмотрим ▲ ABC и ▲ ADC. Они имеют общее основание и равные высоты, так как прямые AC и BD параллельные, то расстояние между ними равно h — высоте ▲ ABC и ▲ ADC . Если площадь треугольника находится по формуле $$S = \frac<1> <2>\cdot a \cdot h$$, то $$S_ = S_ = \frac<1> <2>\cdot AC \cdot h$$.

Свойство №2

Доказательство: Пусть h1 = h2 в двух треугольниках с основаниями a и b.
Рассмотрим отношение площадей этих треугольников $$\frac>>= \frac<\frac<1> <2>\cdot a \cdot h_<1>><\frac<1> <2>\cdot b \cdot h_<2>>$$.
Упростив, получим $$\frac>>= \frac$$.

Доказательство: Рассмотрим ▲ABC и ▲MBN с общим углом B , где AB = a, BC = b, MB = a1и NB = b1. Пусть S1 = SMBN и S2 = SABC . Используя формулу площади треугольника вида $$S = \frac<1> <2>\cdot a \cdot b \cdot sin\gamma$$, рассмотрим отношение площадей ▲ABC и ▲MBN .

Свойство №4

Отношение площадей подобных треугольников равны квадрату коэффициента подобия.

Свойство №3

Если два треугольника имеют общий
угол, то их площади относятся как произведение сторон, заключающих
этот угол.

Доказательство: Рассмотрим ▲ABC и ▲MBN . Пусть AB = k MB, BC = k NB и $$\angle ABC = \angle MBN$$. Используя формулу площади треугольника вида $$S = \frac<1> <2>\cdot a \cdot b \cdot sin\gamma$$ , рассмотрим отношение подобных площадей ▲ABC и ▲MBN . Тогда $$\frac>> = \frac<\frac<1> <2>\cdot AB \cdot BC \cdot sin B><\frac<1> <2>\cdot MB \cdot NB \cdot sin B>= \frac = k^<2>$$ .

Медиана треугольника делит его на две равновеликие части.

Доказательство: Рассмотрим ▲ABC . Пусть медиана BM , тогда $$AM = MC = \frac<1><2>AC$$. Медиана делит треугольник на два с одинаковой высотой. Найдем площади треугольников ▲ABM и ▲MBC по формуле $$S = \frac<1><2>\cdot a \cdot h$$. Получим $$S_ = \frac<1><2>\cdot AM \cdot h$$ и $$S_ = \frac<1><2>\cdot MC \cdot h$$. Значит $$S_ = S_$$.

Свойство №6

Медианы треугольника делят его на три равновеликие части.Доказательство: Рассмотрим ▲ABC . Проведем медианы из всех вершин, которые пересекаются в точке O. Получим треугольники ▲AOB , ▲BOC , ▲AOC . Пусть их площади равны соответственно S1, S2, S3. А площадь ▲ABC равна S. Рассмотрим ▲ABK и ▲CBK , они равной площади, т.к. BK медиана. В треугольнике ▲AOC OK — медиана, значит площади треугольников ▲AOK и ▲COK равны. Отсюда следует, что S1 = S2 . Аналогично можно доказать, что S2 = S3 и S3 = S1 .

Средние линии треугольника площади S отсекают от него треугольники площади .

Доказательство: Рассмотрим ▲ABC . NM — средняя линия в треугольнике и она равна половине основания AC. Если SABC = S , то $$S_ = \frac<1> <2>\cdot NM \cdot h_<1>= \frac<1><2>(\frac<1> <2>\cdot AC)(\frac<1><2>\cdot h) = \frac<1><4>\cdot S$$. Аналогично можно доказать, что площади всех треугольников равны одной четвертой части площади ▲ABC .

Медианы треугольника делят его на 6 равновеликих частей.

Источник

Показать больше

Похожие статьи

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Закрыть