ОТНОШЕНИЯ

Эмпирическое корреляционное отношение определяют как

Корреляционное отношение

В случае наличия линейной или нелинейной зависимости между двумя признаками для измерения тесноты связи применяют корреляционное отношение. Различают эмпирическое и теоретическое корреляционное отношение. Эмпирическое корреляционное отношение рассчитывается по данным группировки.

При отклонении парной статистической зависимости от линейной коэффициент корреляции теряет свой смысл как характеристика тесноты связи. В этом случае можно воспользоваться таким измерителем связи, как индекс корреляции (корреляционное отношение). Корреляционное отношение применяется в случае нелинейной зависимости между признаками и определяется через отношение межгрупповой дисперсии к общей дисперсии.

Для определения эмпирического корреляционного отношения совокупность значений результативного признака У разбивают на отдельные группы. В основу группировки кладется исследуемый фактор Х. Когда изучаемая совокупность (в виде корреляционной таблицы) разбивается на группы по одному (факторному) признаку Х, то для каждой из этих групп можно вычислить соответствующие групповые средние результативного признака. Изменение групповых средних от группы к группе свидетельствует о наличии связи результативного признака с факторным признаком, а примерное равенство групповых средних – об отсутствии связи. Следовательно, чем большую роль в общем изменении результативного признака играет изменение групповых средних (за счет влияния факторного признака), тем сильнее влияние этого признака.

Методика вычисления корреляционного отношения состоит в следующем.

Пусть группирование данных произведено, при этом k – число интервалов группирования по оси Х; – количество элементов выборки в j-ом интервале группирования; n – объем совокупности ( ); – общее среднее.

Вычисляют среднее значение Y в j-ой группе (интервале группирования):

где – l-ый элемент j-ой группы.

Вычисляют общую среднюю Y, используя средние значения в каждой группе:

Определяют межгрупповую дисперсию (дисперсия групповых средних или факторная дисперсия – дисперсия теоретических значений результативного признака, отражает влияние фактора х на вариацию у) и общую дисперсию:

Рассчитывают корреляционное отношение η зависимой переменной Y по независимой переменной Х может быть получено из отношения межгрупповой дисперсии к общей дисперсии:

По правилу сложения дисперсий:

где – остаточная дисперсия эмпирических значений результативного признака, отражает влияние на вариацию у всех остальных факторов, кроме х.

Эмпирическое корреляционное отношение рассчитывается по формуле:

где – средняя из частных (групповых дисперсий);

– межгрупповая дисперсия (дисперсия групповых средних).

Теоретическое корреляционное отношение определяется по формуле:

где – дисперсия выровненных значений результативного признака, т.е. рассчитанных по уравнению регрессии;

– дисперсия эмпирических (фактических) значений результативного признака;

Величина корреляционного отношения изменяется от 0 до 1. Близость ее к нулю говорит об отсутствии связи, близость к единице – о тесноте связи.

Оценка связи на основе теоретического корреляционного отношения (шкала Чеддока):

Источник

Эмпирическое корреляционное отношение, его значение и свойства, техника расчета

Эмпирическое корреляционное отношение — это квадратный корень из коэффициента детерминации. Отношение показывает тесноту связи между группировочным и результативным признаками. Эмпирическое корреляционное отношение принимает значения от -1 до 1. Если связи нет, то корреляционное отношение =0, т.е. все групповые средние равняются между собой и межгрупповой вариации нет. Значит, группировочный признак не влияет на образование общей вариации. Если связь функциональная, то корреляционное отношение =1. В таком случае дисперсия групповых средних равна общей дисперсии, т.е. внутригрупповой вариации нет. Это значит, что группировочный признак полностью определяет вариацию результативного признака. Чем ближе значение корреляционного отношения к единице, тем сильнее и ближе к функциональной зависимости связь между признаками. Выбор знака, если вариация факторного и результативного признака идёт в одном направлении, то берётся знак (+), а если нет, то (-), сам по себе знак не характеризует тесноту связи. Помимо расчета общей дисперсии и её составных частей по абсолютным данным можно производить расчёт дисперсии доли. Для качественной оценки силы связи на основе показателя эмпирического коэффициента корреляции можно использовать соотношение Чэддока.

Дата добавления: 2015-04-24 ; Просмотров: 250 ; Нарушение авторских прав?

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

Эмпирическое корреляционное отношение

Для измерения тесноты связи применяется несколько показателей. При парной связи теснота связи определяется, прежде всего, корреляционным отношением, которое обозначается η. Квадрат корреляционного отношения – это отношение межгрупповой дисперсии результативного признака, которая выражает влияние различий группировочного факторного признака на среднюю величину результативного признака, к общей дисперсии результативного признака, выражающей влияние на него всех причин и условий. Квадрат корреляционного отношения называется коэффициентом детерминации.

ыми явлениями и их признаками: ­­­­­­­­­­­­­________________ или жестко детермини

N – число наблюдений

yi – исходные значения результативного признака

yj – средние значения результативного признака для данной группы

y – среднее значение признака

fj – численность группы

Указанная выше формула применяется при расчете показателя тесноты связи по аналитической группировке. При вычислении корреляционного отношения по уровню связи применяется формула:

Сумма квадратов в числителе ­– это объясненная связью с фактором х (факторами) дисперсия результативного признака у. Она вычисляется по индивидуальным данным, полученным для каждой единицы совокупности на основе уравнения регрессии.

Если уравнение выбрано неверно или сделана ошибка при расчете его параметров, то сумма квадратов в числителе может оказаться больше чем в знаменателе, и отношение утратит тот смысл, который должно иметь. Чтобы избежать ошибочного результата, лучше вычислять корреляционное отношение по следующей формуле:

В основе указанной формулы лежит известное правило разложения сумм квадратов отклонений при группировке совокупности:

Согласно этому правилу можно вместо межгрупповой (факторной) дисперсии использовать разность:

При расчете η не по группировке, а по уравнению корреляционной связи (уравнению регрессии) мы используем формулу. В этом случае правило разложения суммы квадратов отклонений результативного признака записывается как

Важнейшее положение, которое следует теперь усвоить любому, желающему правильно применять метод корреляционно-регрессионого анализа, состоит в интерпретации формул (1.2) и (1.3). Это положение гласит:

Уравнение корреляционной связи измеряет зависимость между вариацией результативного признака и вариацией факторного признака (признаков). Меры тесноты связи измеряют долю вариации результативного признака, которая связанна с вариацией факторного признака (признаков).

Источник

Коэффициент корреляции и коэффициент детерминации

Эмпирический коэффициент детерминации

Эмпирический коэффициент детерминации широко используется в задачах статистики и является показателем, который представляет долю межгруппопой дисперсии в общей дисперсии результативного признака и характеризует силу влияния группировочного признака на образование общей вариации. Он может быть рассчитан по формуле:

Данный коэффициент показывает долю вариации результативного признака у под влиянием фактора х. При отсутствии связи эмпирический коэффициент детерминации равен нулю, а при функциональной сильной связи — единице.

Эмпирическое корреляционное отношение

Эмпирическое корреляционное отношение представляется как корень квадратный из эмпирического коэффициента детерминации. Оно показывает тесноту связи между статистическими данными и определяется по формуле:

где числитель — дисперсия групповых средних;
знаменатель — общая дисперсия.

Корреляционное отношение равно нулю, если связи между данными нет. В таком случае все групповые средние будут равны между собой и межгрупповой вариации не будет.

Корреляционное отношение равно единице тогда, когда связь функциональная. В этом случае дисперсия групповых средних будет равна общей дисперсии, т. е. внутригрупповой вариации не будет.

Чем значения корреляционного отношения ближе к единице, тем сильнее, ближе к функциональной зависимости связь между признаками.

Критерий Пирсона

Критерий Пирсона вычисляется по формуле:

где fэ и fт — эмпирические и теоретические частоты.

С помощью критерия Пирсона по таблицам определяют вероятность P(х^2). Входами в таблицу являются значения х^2 и число степеней свободы k = n — р -1.

Если Р > 0,05, то считается, что эмпирические и теоретические распределения близки. При Р принадлежащим [0,02; 0,05] совпадение между ними удовлетворительное, а в других случаях — недостаточное.

Коэффициент асимметрии

Коэффициент асимметрии рассчитывается по формуле:

где числитель — центральный момент третьего порядка.

б^3 — куб среднего квадратичного отклонения.

Коэффициент асимметрии является безмерной величиной, что позволяет использовать его для различных распределений. При левосторонней асимметрии Mо > Mt > xср, при правосторонней — обратные соотношения. Это позволяет применять наиболее простой показатель асимметрии:

Эксцесс в статистике

Эксцесс есть степень крутости эмпирического распределения по отношению к нормальному. Он определяется по формуле:

где числитель — центральный момент четвертого порядка

Когда распределение островершинное по отношению к нормальному, эксцесс будет положительным, если плосковершинное — отрицательным. Для нормального распределения Е = 0.

Источник

[njwa_button id="1161"]
Показать больше

Похожие статьи

>
Закрыть
Adblock
detector