ОТНОШЕНИЯ

Это период создания математики переменных отношений xix xx вв

Периоды развития математики

Первый период (период зарождения математики), истоки которого теряются в глубине веков, продолжался до VI—V вв. до н.э. В то время проходил процесс накопления человеком математического знания, создавались приемы счета, устная и письменная нумерация, системы счисления. Так как такая «рецептурная» арифметика и геометрия необходимы были для простейшего счета хозяйственных предметов и измерения земельных площадей, то говорить о математике как науке в тот период нет достаточных оснований.

Во второй период (период элементарной математики), длившийся с VI—V вв. до н. э. по XVI в. включительно, осуществлялась систематизация накопленных математических знаний и разработка методов доказательства. Представители греческой математической культуры (Фалес, Пифагор, Платон, Аристотель и др.) характеризовались более рациональным складом мышления по сравнению с их предшественниками из стран Древнего Востока. В творчестве Евклида (III в. до н. э.) эта особенность еще более усиливается. Его система, изложенная в «Началах», была исторически первой математической (точнее, геометрической) системой, определившей создание соответствующего стиля мышления. Она знаменовала собой первую интенсивную революцию в математике, качественную перестройку и упорядочение накопленного математического знания.

Логические средства, которые применил Евклид, — это формальная логика Аристотеля. Его образец мышления, построенный по схеме «определения — аксиомы — теоремы», получил отражение в творчестве многих поколений ученых, но прежде всего в исследованиях Архимеда, Аполлония, Менелая, Птолемея, Диофанта.

Во второй период развития математики формируются тригонометрия и алгебра, расширяется понятие числа, устанавливаются связи между арифметикой и геометрией. Математика выделяется в самостоятельную науку, предметом которой являются операции с постоянными величинами (числами, геометрическими фигурами). Правда, здесь следует помнить, что уже в греческой математике имелись примеры изучения связей между переменными величинами (зависимость площади круга от его радиуса, синус угла, применение в неявном виде понятия предела при определении длины окружности и т. п.).

Идея движения, вошедшая в математику, позволила следующим образом определить ее предмет в третьем периоде: математика есть наука об изменениях величин и геометрических преобразованиях.

К концу третьего периода (середина XIX в.) достаточно богатыми были алгебраические теории (возникает алгебра логики, линейная алгебра, топологическая алгебра, дифференциальная алгебра и т. п.), теория чисел, теория дифференциальных уравнений, вариационное исчисление, теория функций действительного переменного и др. В изменении стиля математического мышления было «повинно» определенное противопоставление «чистой» (теоретической) и «прикладной» математики. Формулы и математические преобразования (выкладки) часто уступали место непосредственному рассуждению. Нарождалась так называемая «математика понятий», и французский математик Э. Галуа (1811—1832) явился одним из первых и наиболее блестящих ее представителей, с именем которого связаны исследования о разрешимости уравнений произвольной степени. Рассматривая уравнение, которое необходимо было решить, он связывал с ним некоторую группу операций и доказывал, что свойства уравнения отражаются на особенностях данной группы. Так как различные уравнения могут иметь одну и ту же группу, достаточно вместо этих уравнений рассмотреть соответствующую им группу. Это открытие ознаменовало начало современного этапа развития математики.

В этот период формируется и современное представление о математической строгости, а на мировой арене появляются русские математики — Н.И. Лобачевский (1792—1856), М.В. Остроградский (1801-1862), В.Я. Буняковский (1804-1889), П.Л. Чебышев (1821— 1894), Я.М. Ляпунов (1911-1973), А.А. Марков (1903-1979) и др.

Таким образом, с середины XIX в. можно говорить о четвертом периоде развития математики — периоде современной математики. Он характеризуется созданием новых областей и теорий математики: неевклидовой геометрии, топологии; теории групп, векторного и тензорного исчислений, функционального анализа, теории множеств.

Характерные черты современной математики:

♦ восхождение ко все более высоким степеням абстракции и идеализации;

♦ доминирующий структурный подход к пониманию предмета математики, аксиоматическое построение теорий, усиление геометрических методов исследования;

♦ интенсивный процесс расширения предмета исследования в науке;

♦ глубокая диалектическая связь между фундаментальными разделами и теориями математики;

♦ возникновение новых средств вычислений, методов исследования и доказательства;

♦ развитие знаковой символики и средств оперирования специальными математическими знаками;

♦ компьютеризация математики, то есть процессы, происходящие в науке под воздействием внедрения и использования ЭВМ;

♦ изучение математических объектов вместе с отображениями этих объектов друг в друге;

♦ исследование математических систем путем выявления в них различного рода математических структур;

♦ высокая эффективность (почти универсальность) применения аппарата и методов математики в естественных, технических и гуманитарных науках.

X. Патнэм в работе «Разум, истина и история» дает краткий перечень традиционных и современных взглядов в философии математики:

Логицизм — математика есть логика в чужом одеянии;

логический позитивизм -математические истины суть истины благодаря правилам языка;

формализм — теория множеств и неконструктивная математика суть просто «идеальное» — и само по себе не несущее смысла—расширение «реальной» — конечной и комбинаторной — математики;

платонизм — согласно Геделю, реально существуют математические объекты, и человеческий ум имеет способность, отличающуюся в некоторой степени от восприятия, с помощью которой он приобретает все лучшую интуицию относительно поведения таких объектов;

холизм — В. Куайн полагал, что математика должна рассматриваться не как отдельная наука, а как часть всей науки, и необходимость квантификации над математическими объектами в случае достаточно богатого языка для эмпирических наук есть наилучшее свидетельство в пользу «постулирования множеств с той же степенью обоснования, какую мы имеем при всяком онтологическом постулировании»; множества и электроны рассматривались Куайном на пару как нечто такое, что нужно постулировать в процессе научного исследования;

квазиэмпирический реализм — идея, о том, что есть нечто аналогичное эмпирическому исследованию в чистой математике;

модализм — мы можем переформулировать классическую математику таким образом, что вместо разговора о множествах, числах и других объектах будем просто утверждать возможность или невозможность определенных структур;

интуиционизм — принятие математических утверждений как значимых, и в то же время отказ от реалистических посылок относительно истин, например бивалентности.

Патнэм полагает, что следует отказаться от первых четырех направлений и продолжать исследования, которые представляют собой определенную смесь последних четырех направлений. Другие исследователи считают перспективными направления, которые в той или иной степени пересекаются с этими последними, но в некотором смысле (в другой классификации) являются самостоятельными. Так, Дж. Кетланд говорит о дополнении списка Патнэма еще тремя направлениями, полагая при этом, что в целом этот список покрывает все направления в философии математики:

номинализм — программа X. Филда;

структурализм — программа С. Шапиро и М. Резника;

натурализм — программа П. Мэдди.

Само многообразие направлений не должно вызывать удивления, поскольку это довольно распространенное явление в современной аналитической философии.

Источник

[njwa_button id="1161"]
Показать больше

Похожие статьи

>
Закрыть
Adblock
detector