ПИТАНИЕ

Гликоген выполняет функцию

Синтез гликогена, в отличие от его разрушения, является эндергоническим – он требует ввода энергии. Энергия для синтеза гликогена приходит из уридин трифосфата (УТФ), который реагирует с глюкозо-1-фосфатом, образуя УДФ-глюкозу, в реакции, катализируемой УТФ-глюкозо-1-фосфатной уридилтрансферазой. Гликоген синтезируется из мономеров УДФ-глюкозы изначально белком гликогенином, который имеет два тирозиновых анкера для восстанавливающего конца гликогена, поскольку гликогенин является гомодимером. После того, как к тирозиновому остатку добавляется около восьми молекул глюкозы, фермент гликогенсинтаза постепенно удлиняет гликогенную цепь с использованием УДФ-глюкозы, добавляя α (1 → 4) -связанную глюкозу. Фермент гликогена катализирует перенос концевого фрагмента из шести или семи остатков глюкозы из нередуцирующего конца в гидроксильную группу С-6 глюкозного остатка глубже во внутреннюю часть молекулы гликогена. Разветвляющийся фермент может действовать только на ветку, имеющую, по меньшей мере, 11 остатков, и фермент может переноситься в одну и ту же цепь глюкозы или соседние цепи глюкозы.

iia-rf.ru

Где запасается гликоген у человека. Что такое гликоген — описание, роли и функции. Где аккумулируется гликоген

Сказ про гликоген в мышцах, про то, как его накопить и как повысить его в мышечных тканях. Ты узнаешь за какое максимальное время запасы гликогена восстанавливаются и как можно их быстро сжечь. Но обо все по порядку. Поехали!

— Не быть тебе культуристом, Ваня, — сказал Серый Волк. — Ты всё делаешь неправильно. Сперва надо подпитаться энергией, потом тренироваться, а после тренировки пополнить запас. А ты что делаешь? Голодный кидаешься на штангу, как собака на кость, а потом удивляешься, почему мускулатура на тебе всё тощает и тощает.

Привет, друзья! Много вещей можно познать на практике, но без теории мы рискуем потратить втрое больше времени, и добиться лишь очень скромных результатов. Прежде, чем браться за работу над построением собственного рельефа, надо чуточку поднатореть в понимании, что такое — гликоген в мышцах, и как от него зависят наши победы.

Что это такое? Основное энергетическое НЗ любого живого существа. Это компонент, который в случае необходимости расщепляется до глюкозы при помощи специфических ферментов и даёт нам силу.

Ты мне — я тебе

Больше всего гликогена в процентном соотношении накапливается в гепатоцитах. Зачем я это говорю, ведь особенность мобилизации в состоит в том, что накопленный здесь запас не может напрямую использоваться для наших мускулов? Но он не менее важен и обеспечивает организму постоянный уровень сахара в крови, даёт энергию для функционирования мозговых клеток, а так же — всех внутренних органов.

Для мускулов имеют значение прежде всего их собственные энергетические склады. Синтезируясь и распадаясь в мышечной ткани, гликоген обеспечивает работу и восстановление . Но чтобы строить, для начала нужно получить строительный материал.

  • в случае, если надо «подсушить» мускулатуру — убавляем калораж углеводов;
  • для набора массы — увеличиваем.

Жир и белок остаётся на неизменном уровне. Вот и всё!

Почему нельзя бесконечно прибавлять углеводистую пищу? Казалось бы, ешь её от пуза — и будет счастье. Но, как уже говорилось не раз, избыток, который не в состоянии вместиться в мышечные волокна и не расходуется в течение дня, стимулирует отложение жировой ткани.

Что это за зверь такой «гликоген»? Обычно о нем вскользь упоминается в связи с углеводами, однако мало кто решает углубиться в саму суть данного вещества.

Кость Широкая решила рассказать вам все самое важное и нужное о гликогене, чтобы больше не верили в миф о том, что «сжигание жиров начинается только после 20 минуты бега». Заинтриговали?

Итак, из этой статьи вы узнаете: что такое гликоген, строение и биологическую роль, его свойства, а также формулу и структуру строения, где и для чего содержится гликоген, как происходит синтез и распад вещества, как происходит обмен, а также, какие продукты являются источником гликогена.

Что это такое в биологии: биологическая роль

Нашему телу еда в первую очередь нужна как источник энергии, а уже потом, как источник удовольствия, антистрессовый щит или возможность «побаловать» себя. Как известно, энергию мы получаем из макронутриентов: , и .

Жиры дают 9 ккал, а белки и углеводы — 4 ккал. Но не смотря на большую энергетическую ценность жиров и важную роль незаменимых аминокислот из белков важнейшими «поставщиками» энергии в наш организм являются углеводы.

Почему? Ответ прост: жиры и белки являются «медленной» формой энергии, т.к. на их ферментацию требуется определенное время, а углеводы — относительно «быстрой» . Все углеводы (будь то конфета или хлеб с отрубями) в конце концов расщепляются до глюкозы , которая необходима для питания всех клеток организма.

Строение

Гликоген — это своеобразный «консервант» углеводов, другими словами, энергетические резервы организма — сохраненная про запас для последующих энергетических нужд глюкоза. Она хранится в связанном с водой состоянии. Т.е. гликоген — это «сироп» калорийностью 1-1.3 ккал/гр (при калорийности углеводов 4 ккал/г).

По сути, молекула гликогена состоит из остатков глюкозы, это запасное вещество на случай нехватки энергии в организме!

Структурная формула строения фрагмента макромолекулы гликогена (C6H10O5) выглядит схематично так:

К какому виду углеводов относится

Вообще, гликоген — это полисахарид, а значит, относится к классу «сложных» углеводов:

В каких продуктах содержится

В гликоген может пойти только углевод. Поэтому крайне важно держать в своем рационе планку углеводов не ниже 50 % от общей калорийности. Употребляя нормальный уровень углеводов (около 60% от суточного рациона) вы по максимуму сохраняете собственный гликоген и заставляете организм очень хорошо окислять углеводы.

Важно иметь в рационе хлебобулочные изделия, каши, злаки, разные фрукты и овощи.

Лучшими источниками гликогена являются: сахар, мед, мармелад, варенье, финики, изюм, инжир, арбуз, хурма, сладкая выпечка.

Осторожно к подобной пище стоит отнестись лицам с дисфункцией печени и недостатком ферментов.

Метаболизм

Как же происходит создание и процесс распад гликогена?

Синтез

Как организм запасает гликоген? Процесс образования гликогена (гликогенез) проходит по 2 сценариям. Первый — это процесс запаса гликогена. После углеводосодержащей еды уровень глюкозы в крови повышается. В ответ инсулин попадает в кровоток, чтобы впоследствии облегчить доставку глюкозы в клетки и помочь синтезу гликогена.

Благодаря ферменту (амилазе) происходит расщепление углеводов (крахмала, фруктозы, мальтозы, сахарозы) на более мелкие молекулы.

Затем под воздействием ферментов тонкого кишечника осуществляется распад глюкозы на моносахариды. Значительная часть моносахаридов (самая простая форма сахара) поступает в печень и мышцы, где гликоген откладывается в «резерв» . Всего синтезируется 300-400 гр гликогена.

Т.е. само превращение глюкозы в гликоген (запасной углевод) происходит в печени, т.к. мембраны клеток печени в отличие от мембраны клеток жировой ткани и мышечных волокон свободно проницаемы для глюкозы и в отсутствие инсулина.

Распад

Второй механизм под названием мобилизация (или распад) запускается в периоды голода или активной физической деятельности . По мере необходимости гликоген мобилизуется из депо и превращается в глюкозу, которая поступает к тканям и используется ими в процессе жизнедеятельности.

Когда организм истощает запас гликогена в клетках, то мозг подает сигналы о необходимости «дозаправки». Схема синтеза и мобилизации гликогена:

Кстати, при распаде гликогена происходит торможение его синтеза, и наоборот: при активном образовании гликогена его мобилизация тормозится. Гормоны, отвечающие за мобилизацию данного вещества, т.е., гормоны, стимулирующие распад гликогена — это адреналин и глюкагон.

Где содержится и каковы функции

Где накапливается гликоген для последующего использования:

В печени

Основные запасы гликогена находятся в печени и мышцах. Количество гликогена в печени может достигать у взрослого человека 150 — 200 гр. Клетки печени являются лидерами по накоплению гликогена: они могут на 8 % состоять из этого вещества.

Основная функция гликогена печени — поддержать уровень сахара в крови на постоянном, здоровом уровне .

Печень сама себе является одним из важнейших органов организма (если вообще стоит проводить «хит парад» среди органов, которые нам все необходимы), а хранение и использование гликогена делает ее функции еще ответственнее: качественное функционирование головного мозга возможно только благодаря нормальному уровню сахара в организме.

Если же уровень сахара в крови снижается, то возникает дефицит энергии, из-за которого в организме начинается сбой. Нехватка питания для мозга сказывается на центральной нервной системе, которая истощается. Тут то и происходит расщепление гликогена. Потом глюкоза поступает в кровь, благодаря чему организм получает необходимое количество энергии.

Запомним также, что в печени происходит не только синтез гликогена из глюкозы, но и обратный процесс — гидролиз гликогена до глюкозы. Этот процесс вызывается понижением концентрации сахара в крови в результате усвоения глюкозы различными тканями и органами.

В мышцах

Гликоген откладывается также в мышцах. Общее количество гликогена в организме составляет 300 — 400 граммов. Как мы знаем, около 100-120 граммов вещества накапливается в клетках печени, а вот остальная часть (200-280 гр ) сохраняется в мышцах и составляет максимум 1 — 2% от общей массы этих тканей.

Хотя если говорить максимально точно, то следует отметить, что гликоген хранится не в мышечных волокнах, а в саркоплазме — питательной жидкости, окружающей мышцы.

Количество гликогена в мышцах увеличивается в случае обильного питания и уменьшается во время голодания, а снижается только во время физической нагрузки – длительной и/или напряженной.

При работе мышц под влиянием специального фермента фосфорилазы, которая активируется в начале мышечного сокращения, происходит усиленное распад гликогена в мышцах, который используется для обеспечения глюкозой работы самих мышц (мышечных сокращений). Таким образом, мышцы используют гликоген только для собственных нужд.

Интенсивная мышечная деятельность замедляет всасывание углеводов, а легкая и непродолжительная работа усиливает всасывание глюкозы.

Гликоген печени и мышц используется для разных нужд, однако говорить о том, что какой-то из них важнее — абсолютнейший вздор и демонстрирует только вашу дикую неграмотность.

Применение при похудении

Важно знать, почему работают низкоуглеводные высокобелковые диеты. В организме взрослого может находиться около 400 граммов гликогена, а как мы помним, на каждый грамм резервной глюкозы приходится примерно 4 грамма воды.

Т.е. около 2 кг вашего веса — это масса гликогенного водного раствора. Кстати, поэтому мы активно потеем в процессе тренировок — организм расщепляет гликоген и при этом теряет в 4 раза больше жидкости.

Этим свойством гликогена объясняется и быстрый результат экспресс-диет для похудения. Безуглеводные диеты провоцируют интенсивное израсходование гликогена, а с ним – жидкости из организма. Но как только человек возвращается к обычному рациону с содержанием углеводов, запасы животного крахмала восстанавливаются, а с ними и потерянная за период диеты жидкость. В этом и кроется причина недолгосрочности результата экспресс-похудения.

Влияние на спорт

Для любых активных физических нагрузок (силовые упражнения в тренажерном зале, бокс, бег, аэробика, плавание и все, что заставляет вас потеть и напрягаться) организму нужно 100-150 граммов гликогена в каждый час активности . Потратив запасы гликогена, тело начинает разрушать сперва мышцы, затем жировую ткань.

Обратите внимание: если речь идет не о длительном полном голодании, запасы гликогена не истощаются полностью, потому что имеют жизненно важное значение. Без запасов в печени мозг может остаться без снабжения глюкозой, а это смертельно опасно, ведь мозг самый главный орган (а не попа, как некоторые думают).

Без запасов в мышцах сложно совершить интенсивную физическую работу, что в природе воспринимается как повышенный шанс быть съеденным/без потомства/замерзшим и т.д.

Тренировки истощают запасы гликогена, но не по схеме «первые 20 минут работаем на гликогене, потом переходим на жиры и худеем».

Для примера возьмем исследование, в котором тренированные атлеты выполняли 20 сетов упражнений на ноги (4 упражнения, 5 сетов каждого; каждый сет выполнялся до отказа и составлял 6-12 повторений; отдых был коротким; общее время тренировки составило 30 минут).

Кто знаком с силовыми тренировками, понимает, что было отнюдь не легко. До и после упражнения у них брали биопсию и смотрели содержание гликогена. Оказалось, что количество гликогена снизилось с 160 до 118 ммоль/кг, т. е. менее, чем на 30% .

Вот так походя мы развеяли еще один миф — вряд ли за тренировку вы успеете исчерпать все запасы гликогена, так что не стоит набрасываться на еду прямо в раздевалке среди потных кроссовок и посторонних тел, вы явно не помрете от «неминуемого» катаболизма.

Кстати, пополнять запасы гликогена стоит не в течении 30 минут после тренировки (увы, ), а в течении 24 часов.

Люди крайне преувеличивают скорость истощения гликогена (как и многие другие вещи) ! Любят сразу на тренировке закинуться «углями» после первого разминочного подхода с грифом пустым, а то ж «истощение мышечного гликогена и КАТАБОЛИЗМ». Прилег на час днем и усе, печеночного гликогена как не бывало.

Мы уж молчим про катастрофические энергозатраты от 20минутного черепашьего бега. Да и вообще, мышцы жрут чуть не 40 ккал на 1 кг, белок гниет, образует слизь в жкт и провоцирует рак, так, что аж 5 лишних кило на весах (не жира, ага), жиры вызывают ожирение, углеводы смертельно опасны (боюсь-боюсь) и вы точно помрете.

Странно только, что мы вообще ухитрились выжить в доисторические времена и не вымерли, хотя питались явно не амброзией и спортпитом.

Помните, пожалуйста, что природа умнее нас и давно все при помощи эволюции отрегулировала. Человек один из самых адаптированных и приспосабливаемых организмов, который способен существовать, размножаться, выживать. Так что без психозов, господа и дамы.

Однако тренироваться на пустой желудок более чем бессмысленно.»Что же делать?» подумаете вы. Ответ вы узнаете в статье , которая расскажет вам о последствиях голодных тренировок.

За какое время расходуется?

Гликоген печени расщепляется при снижении концентрации глюкозы в крови, прежде всего между приемами пищи. Через 48-60 часов полного голодания запасы гликогена в печени полностью истощаются.

Гликоген мышц расходует во время физической активности. И тут мы опять вернемся к мифу: «Чтобы сжечь жир, нужно бегать не менее 30 минут, поскольку только на 20-й минуте в организме истощаются запасы гликогена и в качестве топлива начинает использоваться подкожный жир», только с чисто математической стороны. Откуда это пошло? А пес его знает!

Действительно, организму проще использовать гликоген, чем окислять жир для энергии, поэтому в первую очередь расходуется он. Отсюда и миф: надо сначала израсходовать ВЕСЬ гликоген, и потом жир начнет гореть, а произойдет это примерно через 20 минут после начала аэробной тренировки. Почему 20? Понятия не имеем.

НО : никто не учитывает, что использовать весь гликоген не так-то просто и 20-ю минутами тут дело не ограничится.

Как мы знаем, общее количество гликогена в организме составляет 300 — 400 граммов, а в некоторых источниках говорится о 500 граммах, что дает нам от 1200 до 2000 ккал ! Вы вообще представляете, сколько нужно бегать, чтобы истощить такую прорву калорий? Человек весом в 60 кг должен будет пробежать в среднем темпе от 22 до З5 километров. Ну как, готовы?

Истощила гликоген ?

Организм человека – это точно отлаженный механизм, действующий по своим законам. Каждый винтик в нем делает свою функцию, дополняя общую картину.

Любое отклонение от первоначального положения может привести к сбою всей системы и такое вещество, как гликоген, тоже имеет свои функции и количественные нормы.

Что такое гликоген?

Гликоген по своей химической структуре относится к группе , основу которых составляет глюкоза, только в отличие от крахмала запасается он в тканях животных, в том числе человека. Основным местом, где гликоген запасается человеком является печень, но кроме того, он накапливается и в скелетных мышцах, обеспечивая энергию для их работы.

Главная роль, которую выполняет вещество — накопление энергии в виде химической связи. При поступлении в организм большого количества углеводов, которое нельзя реализовать в ближайшее время, избыток сахара при участии , доставляющего глюкозу в клетки, превращается в гликоген, запасающий впрок энергию.

Общая схема гомеостаза глюкозы

Обратная ситуация: когда углеводов не хватает, например, во время голодания или после большой физической активности, наоборот, происходит расщепление вещества и превращение его в глюкозу, которая легко усваивается организмом, давая при окислении дополнительную энергию.

Роль вещества в организме человека

Функции гликогена весьма разнообразны. Помимо запасного компонента, он играет и другие роли.

Печень

Находящийся в печени гликоген помогает поддерживать нормальный , регулируя его с помощью выделения или поглощения излишков в клетках глюкозы. Если запасы становятся слишком большими, а источник энергии продолжает поступать в кровь, он начинает откладываться уже в виде жиров в печени и подкожной жировой клетчатке.

Вещество позволяет осуществлять процесс синтеза сложных углеводов, участвуя в его регулировании и, значит, в обменных процессах организма.

Питание мозга и других органов происходит во многом благодаря гликогену, поэтому его присутствие позволяет осуществлять и мыслительную деятельность, обеспечивая достаточное количество энергии для деятельности головного мозга, потребляющего до 70 процентов глюкозы, образующейся в печени.

Мышцы

Важное значение имеет гликоген и для мышц, где он содержится в немного меньшем количестве. Основная задача его здесь – обеспечение движения. Во время действия происходит потребление энергии, которая образуется за счет расщепления углевода и окисления глюкозы, во время покоя и поступления новых питательных веществ в организм – создание новых молекул.

Причем это касается не только скелетных, но и сердечной мышцы, качество работы которой во многом зависит от наличия гликогена, а у людей с недостатком массы тела развиваются патологии сердечной мышцы.

При недостатке вещества в мышцах начинают расщепляться другие вещества: жиры и белки. Распад последних особенно опасен, поскольку приводит к разрушению самой основы мышц и дистрофии.

В тяжелых ситуациях организм способен выйти из положения и создать себе глюкозу самостоятельно из неуглеводных веществ, этот процесс называется гликонеогенезом.

Однако, его значение для организма значительно меньше, поскольку разрушение происходит по несколько иному принципу, не давая того количества энергии, которое необходимо организму. В то же время используемые для него вещества могли бы быть израсходованы на другие жизненно важные процессы.

Кроме того, это вещество обладает свойством связывать воду, накапливая и ее тоже. Именно поэтому во время интенсивных тренировок спортсмены сильно потеют, это выделяется связанная с углеводом вода.

Чем опасны дефицит и избыток?

При очень хорошем питании и недостатке физической нагрузки баланс между накоплением и расщеплением гранул гликогена нарушается и происходит его обильное запасание.

  • к сгущению крови;
  • к нарушениям в работе печени;
  • к увеличению веса тела;
  • к сбоям в работе кишечника.

Излишки гликогена в мышцах снижают эффективность их работы и постепенно приводят к возникновению жировой ткани. У спортсменов часто гликоген в мышцах накапливается чуть больше, чем у других людей, это приспособление к условиям тренировок. Однако у них запасается и кислород, позволяющий быстро окислить глюкозу, выделяя очередную партию энергии.

У остальных людей накопление излишков гликогена, наоборот, снижает функциональные возможности мышечной массы и приводит к набору дополнительного веса.

Недостаток гликогена также отрицательно сказывается на работе организма. Поскольку это основной источник энергии, то ее будет недостаточно для совершения различных видов работ.

В результате у человека:

  • появляется вялость, апатия;
  • ослабляется иммунитет;
  • ухудшается память;
  • происходит потеря веса, причем за счет мышечной массы;
  • ухудшается состояние кожи и волос;
  • снижается тонус мышц;
  • наблюдается упадок жизненных сил;
  • часто появляются депрессивные состояния.

Привести к нему могут большие физические или психоэмоциональные нагрузки при недостаточном питании.

Видео от эксперта:

Таким образом, гликоген выполняет важные функции в организме, обеспечивая баланс энергии, накапливая и отдавая ее в нужный момент. Переизбыток его, как и недостаток, сказывается отрицательно на работе разных систем организма, в первую очередь мышц и головного мозга.

При переизбытке необходимо ограничить потребление углеводосодержащих продуктов, предпочтя белковые.

При недостатке же, наоборот, надо есть продукты, дающие большое количество гликогена:

  • фрукты (финики, инжир, виноград, яблоки, апельсины, хурма, персики, киви, манго, клубника);
  • сладости и мед;
  • некоторые овощи (морковь и свекла);
  • мучные продукты;
  • бобовые.

Гликоген представляет собой многоразветвленный полисахарид глюкозы, который служит в качестве формы хранения энергии у людей, животных, грибов и бактерий. Полисахаридная структура представляет собой основную форму хранения глюкозы в организме. У людей, гликоген производится и хранится, в основном, в клетках печени и мышцах, гидратированных тремя или четырьмя частями воды. Гликоген функционирует как вторичное долговременное хранилище энергии, причем первичные запасы энергии являются жирами, содержащимися в жировой ткани. Мышечный гликоген превращается в глюкозу мышечными клетками, а гликоген печени превращается в глюкозу для использования по всему телу, включая центральную нервную систему. Гликоген является аналогом крахмала, глюкозного полимера, который функционирует как хранилище энергии в растениях. Он имеет структуру, похожую на амилопектин (компонент крахмала), но более интенсивно разветвленную и компактную, чем крахмал. Оба являются белыми порошками в сухом состоянии. Гликоген встречается в виде гранул в цитозоле / цитоплазме во многих типах клеток и играет важную роль в цикле глюкозы. Гликоген образует запас энергии, который можно быстро мобилизовать для удовлетворения внезапной потребности в глюкозе, но менее компактен, чем энергетические запасы триглицеридов (липидов). В печени, гликоген может составлять от 5 до 6% от массы тела (100-120 г у взрослого человека). Только гликоген, хранящийся в печени, может быть доступен другим органам. В мышцах, гликоген находится в низкой концентрации (1-2% от массы мышц). Количество гликогена, хранящегося в организме, особенно в мышцах, печени и красных кровяных клетках , в основном, зависит от тренировок, базового метаболизма и привычек в еде. Небольшое количество гликогена находится в почках и даже меньшее количество – в некоторых глиальных клетках мозга и лейкоцитов. Матка также хранит гликоген во время беременности, чтобы питать эмбрион.

Структура

Гликоген представляет собой разветвленный биополимер, состоящий из линейных цепей глюкозных остатков с дальнейшими цепями, разветвляющимися каждые 8-12 глюкоз или около того. Глюкозы связаны линейно с помощью α (1 → 4) гликозидных связей от одной глюкозы к следующей. Ветви связаны с цепями, от которых они отделяются гликозидными связями α (1 → 6) между первой глюкозой новой ветви и глюкозой в цепочке стволовых клеток . Из-за того, как синтезируется гликоген, каждая гликогенная гранула имеет в своем составе гликогениновый белок. Гликоген в мышцах, печени и жировых клетках хранится в гидратированной форме, состоящей из трех или четырех частей воды на часть гликогена, связанной с 0,45 миллимолями калия на грамм гликогена.

Функции

Печень

Поскольку еда, содержащая углеводы или белок, съедается и переваривается, уровень глюкозы в крови повышается, а поджелудочная железа выделяет инсулин. Кровь глюкозы из воротной вены поступает в клетки печени (гепатоциты). Инсулин воздействует на гепатоциты, чтобы стимулировать действие нескольких ферментов, включая гликогенсинтазу. Молекулы глюкозы добавляются к цепям гликогена до тех пор, пока как инсулин, так и глюкоза остаются обильными. В этом постпрандиальном или «сытом» состоянии печень берет больше глюкозы из крови, чем высвобождает. После того, как еда была переварена и уровень глюкозы начинает падать, секреция инсулина снижается, и синтез гликогена прекращается. Когда это необходимо для энергии, гликоген разрушается и снова превращается в глюкозу. Гликогенфосфорилаза является основным ферментом распада гликогена. В течение следующих 8-12 часов, глюкоза, полученная из гликогена печени, является основным источником глюкозы в крови, используемой остальной частью организма для получения топлива. Глюкагон, еще один гормон, вырабатываемый поджелудочной железой, во многом служит противодействующим сигналом к инсулину. В ответ на уровень инсулина ниже нормы (когда уровень глюкозы в крови начинает падать ниже нормального диапазона), глюкагон секретируется в возрастающих количествах и стимулирует как гликогенолиз (распад гликогена), так и глюконеогенез (производство глюкозы из других источников).

Мышцы

Гликоген мышечной клетки, по-видимому, функционирует как непосредственный резервный источник доступной глюкозы для мышечных клеток. Другие ячейки, которые содержат небольшие количества, также используют его локально. Поскольку мышечным клеткам не хватает глюкозо-6-фосфатазы, которая требуется для приема глюкозы в кровь, гликоген, который они хранят, доступен исключительно для внутреннего использования и не распространяется на другие клетки. Это контрастирует с клетками печени, которые по требованию легко разрушают свой сохраненный гликоген в глюкозу и отправляют его через кровоток в качестве топлива для других органов.

История

Гликоген был обнаружен Клодом Бернардом. Его эксперименты показали, что в печени содержится вещество, которое может привести к восстановлению сахара под действием «фермента» в печени. К 1857 году он описал выделение вещества, которое он назвал «la matière glycogène», или «сахарообразующее вещество». Вскоре после открытия гликогена в печени, А. Сансон обнаружил, что мышечная ткань также содержит гликоген. Эмпирическая формула для гликогена (C6H10О5)n был установлен Кекуле в 1858 году.

Метаболизм

Синтез

Синтез гликогена, в отличие от его разрушения, является эндергоническим – он требует ввода энергии. Энергия для синтеза гликогена приходит из уридин трифосфата (УТФ), который реагирует с глюкозо-1-фосфатом, образуя УДФ-глюкозу, в реакции, катализируемой УТФ-глюкозо-1-фосфатной уридилтрансферазой. Гликоген синтезируется из мономеров УДФ-глюкозы изначально белком гликогенином, который имеет два тирозиновых анкера для восстанавливающего конца гликогена, поскольку гликогенин является гомодимером. После того, как к тирозиновому остатку добавляется около восьми молекул глюкозы, фермент гликогенсинтаза постепенно удлиняет гликогенную цепь с использованием УДФ-глюкозы, добавляя α (1 → 4) -связанную глюкозу. Фермент гликогена катализирует перенос концевого фрагмента из шести или семи остатков глюкозы из нередуцирующего конца в гидроксильную группу С-6 глюкозного остатка глубже во внутреннюю часть молекулы гликогена. Разветвляющийся фермент может действовать только на ветку, имеющую, по меньшей мере, 11 остатков, и фермент может переноситься в одну и ту же цепь глюкозы или соседние цепи глюкозы.

Гликогенолиз

Гликоген расщепляется от нередуцирующих концов цепи ферментом гликогенфосфорилазы с получением мономеров глюкозо-1-фосфата. In vivo, фосфорилиз протекает в направлении распада гликогена, поскольку соотношение фосфата и глюкозо-1-фосфата обычно больше 100. Затем глюкозо-1-фосфат превращается в 6-фосфат глюкозы (G6P) фосфоглюкомтазой. Для удаления α (1-6) ветвей в разветвленном гликоге необходим специальный ферментационный фермент, преобразующий цепочку в линейный полимер. Полученные мономеры G6P имеют три возможных судьбы: G6P может продолжаться по пути гликолиза и использоваться в качестве топлива. G6P может проникать через пентозофосфатный путь через фермент глюкозо-6-фосфатдегидрогеназу для получения НАДФН и 5-углеродных сахаров. В печени и почках, G6P можно дефосфорилировать обратно в глюкозу ферментом глюкозо-6-фосфатазой. Это последний шаг в пути глюконеогенеза.

Клиническая значимость

Нарушения метаболизма гликогена

Наиболее распространенным заболеванием, при котором метаболизм гликогена становится ненормальным, является , при котором из-за аномальных количеств гликоген печени может аномально накапливаться или истощаться. Восстановление нормального метаболизма глюкозы обычно нормализует метаболизм гликогена. При гипогликемии, вызванной чрезмерным уровнем инсулина, количества гликогена в печени высоки, но высокие уровни инсулина предотвращают гликогенолиз, необходимый для поддержания нормального уровня сахара в крови. Глюкагон является распространенным методом лечения этого типа гипогликемии. Различные врожденные ошибки метаболизма вызваны недостатками ферментов, необходимых для синтеза или расщепления гликогена. Они также называются заболеваниями, связанными с хранением гликогена.

Эффект истощения гликогена и выносливость

Спортсмены, бегающие на длинные дистанции, такие как марафонские бегуны, лыжники и велосипедисты, часто испытывают истощение гликогена, когда почти все запасы гликогена в организме спортсмена истощаются после длительных нагрузок без достаточного потребления углеводов. Истощение гликогена может быть предотвращено тремя возможными способами. Во-первых, во время упражнения углеводы с максимально возможной скоростью преобразования в глюкозу крови (высокий гликемический индекс) поступают непрерывно. Наилучший результат этой стратегии заменяет около 35% глюкозы, потребляемой при сердечных ритмах, выше примерно 80% от максимума. Во-вторых, благодаря адаптационным тренировкам на выносливость и специализированным схемам (например, тренировки с низкой степенью выносливости плюс диета), организм может определять мышечные волокна типа I для улучшения эффективности использования топлива и рабочей нагрузки для увеличения процента жирных кислот, используемых в качестве топлива, чтобы сберечь углеводы. В-третьих, при потреблении больших количеств углеводов после истощения запасов гликогена в результате физических упражнений или диеты, организм может увеличить емкость хранилищ внутримышечных гликогенов. Этот процесс известен как «углеводная нагрузка». В общем, гликемический индекс источника углеводов не имеет значения, поскольку чувствительность мышечного инсулина в результате временного истощения гликогена увеличивается.

Гликогены – это сложные, комплексные углеводы. Благодаря гликогенезу глюкоза, которая поступает в организм с пищей, и образует гликогены.

На вопрос: «Что такое гликоген?» можно ответить просто: это резерв глюкозы, без которого организм не сможет нормально работать.

Синтез и распад этих углеводов происходит таким образом: когда человек употребляет пищу благодаря ферменту (амилазе) происходит расщепление углеводов (а также крахмала, фруктозы, мальтозы, сахарозы) на более мелкие молекулы. Затем под воздействием ферментов тонкого кишечника (сахаразы, мальтозы, панкреатической амилазы) осуществляется распад глюкозы на моносахариды.

Распад и синтез продолжается таким образом, что в кроветворную систему попадает часть глюкозы, которая высвободилась, а другая часть попадает не в саму печень, а направляется точно к клеткам остальных органов. Цитоплазма этих клеток занимается хранением гликогена, который представляет собой особые гранулы. В этих клетках и происходит гликолиз. Что такое гликолиз? Это распад глюкозы.

Эти углеводы являются энергетическим резервом нашего организма. Если возникает острая необходимость, организм получает из гликогена то количество глюкозы, которое недостает. Как же происходит этот распад? Период между приемом пищи является тем временем, когда и происходит распад вещества. Если человек занимается тяжелой физической деятельностью, распад будет ускоряться.

Под действием особых ферментов глюкозные остатки отщепляются, и происходит распад вещества, во время которого не затрачивается АТФ.

Синтез гликогена может нарушаться. Такой сбой представляет собой заболевания, которые имеют наследственный характер. Синтез вещества и его пребывание в жизненно важных органах неумеренным количеством может быть следствием дефекта ферментов, которые регулируют распад углеводов.

Гликогеноз – это одно из генетических заболеваний, при котором нарушается развитие органов, задерживается психомоторное развитие. А также приводит к тяжелым состояниям, связанным с понижением уровня сахара в крови, вплоть до гипогликемической комы. Биопсия печени помогает установить правильный диагноз. Во время диагностики при наличии заболевания можно установить активность ферментов, которые регулируют распад и синтез вещества, а также его содержание в тканях.

Глюкоза просто необходима организму для того, чтобы на протяжении всего дня образовывать энергию. Углеводы, которые попадают в организм, являются источником глюкозы.

Часть глюкозы, которая не была израсходована организмом, превращается в крахмал. Он и является гликогеном, который откладывается в мышцах и печени. Отложенные запасы этого крахмала быстро могут расходоваться во время физической активности, болезнях или диетах.

Есть различие между печеночным и мышечным гликогеном. Мышечный является источников запаса глюкозы для клеток мышц. А печеночный участвует в регулировке нормальной концентрации сахара в крови. Синтез этого вещества происходит практически во всех тканях организма. Правильный синтез гликогена связан с пищей, богатой на углеводы.

Зачем он нужен в печени?

Печень – это важнейший внутренний орган человеческого организма. Под ее руководством происходит множество важнейших функций, без которых бы организм не смог полноценно работать.

Слаженное функционирование головного мозга возможно благодаря нормальному уровню сахара в организме. Это происходит под четким руководством печени, без нее это было бы невозможно. За счет липогенеза уровень сахара балансируется в пределах нормы.

Если же уровень сахара в крови снижается, фосфорилаза активизируется, вследствие чего происходит расщепление гликогена. Тогда его скопления просто исчезают из цитозол клеток различных органов. Происходит поступление глюкозы в кровь, благодаря чему организм получает то количество энергии, в котором он нуждается.

В случае же, если уровень сахара, наоборот, повышается, клетками печени осуществляется синтез и депонирование гликогена.

Как он влияет на вес тела?

Углеводный обмен в организме зависит от работы, которую осуществляет гликоген в печени. Поэтому для нормального функционирования всего организма уровень этого вещества должен быть в пределах нормы: не больше и не меньше. Крайности никогда не приносят пользы.

Крахмал способен связывать воду. К примеру, на 10 грамм вещества приходится 40 грамм воды. Поэтому во время тренировок теряется не только сам гликоген, но вместе с ним и вода, которая по количеству превышает его в четыре раза. Также и во время быстрых диет, ограничивающих в течение нескольких дней калории, теряется вода. Поэтому быстрое похудение – это не что иное, как самообман.

Какие исследования показывают его количество?

Чтобы узнать, как функционирует гликоген в печени, следует провести цитохимическое обследование. В мазке периферической крови крахмал находится в цитозеле нейтрофилов, лимфоцитов, а также тромбоцитах. В костном мозге его находят в мегакариоцитах, нейтрофилах и лимфоцитах.

Количество устанавливается, проводя PAS-реакцию или ШИК-реакцию. Во время обследования вещество становится вишнево-фиолетовым.

О чем говорит отсутствие гликогенов в организме?

Заболевание, которое характеризуется отсутствием гликогена, называется агликогенозом. Это заболевание возникает вследствие отсутствия фермента, который осуществляет синтез гликогена. Этот фермент имеет название «гликогенсинтетаза».

Источник

Гликоген как резервный полисахарид. Глюкостатическая функция печени.

Гликоген (С6Н10О5)n – резервный полисахарид, который содержится в животных организмах, а также в клетках грибов, дрожжей и некоторых растений (кукурзы). В животных организмах гликоген локализируется в печени (20%) и мышцах (4%). Печень — главный орган, в клетках которого происходят биохимические превращения продуктов пищеварительного гидролиза углеводов и превращение их в глюкозу — форму, доступную для клеток организма. Печень — депо углеводов, так как часть глюкозы хранится здесь в виде гликогена.

Печень поддерживает содержание глюкозы в крови на постоянном уровне — в этом состоит глюкостатическая функция печени.

А)синтез гликогена из глюкозы (глюкогеногенез)

Гликоген синтезируется в период пищеварения (через 1-2 ч после приёма углеводной пищи). Следует отметить, что синтез гликогена из глюкозы (рис. 7-23), как и любой анаболический процесс, является эндергоническим, т.е. требующим затрат энергии.

Глюкоза, поступающая в клетку, фосфорилируется при участии АТФ (реакция 1). Затем глюкозо-6-фосфат в ходе обратимой реакции превращается в глюкозо-1 -фосфат (реакция 2) под действием фермента фосфоглюкомутазы. Глюкозо-1-фосфат по термодинамическому состоянию мог бы служить субстратом для синтеза гликогена. Но в силу обратимости реакции глюкозо-6-фосфат ↔ глюкозо-1-фосфат синтез гликогена из глюкозо-1-фосфата и его распад оказались бы также обратимыми и поэтому неконтролируемыми. Чтобы синтез гликогена был термодинамически необратимым, необходима дополнительная стадия образования уридинди-фосфатглюкозы из УТФ и глюкозо-1-фосфата (реакция 3). Фермент, катализирующий эту реакцию, назван по обратной реакции: УДФ-глюкопирофосфорилаза. Однако в клетке обратная реакция не протекает, потому что образовавшийся в ходе прямой реакции пирофосфат очень быстро расщепляется пирофосфатазой на 2 молекулы фосфата (рис. 7-24).

Реакция образования УДФ-глюкозы обусловливает необратимость всей серии реакций, протекающих при синтезе гликогена. Этим же объясняется невозможность протекания распада гликогена путём простого обращения процесса его синтеза.

Образованная УДФ-глюкоза далее используется как донор остатка глюкозы при синтезе гликогена (рис. 7-23, реакция 4). Эту реакцию катализирует фермент гликогенсинтаза (глюкозилтрансфераза). Поскольку в данной реакции не используется АТФ, фермент называют син-тазой, а не синтетазой. Нуклеотидная часть УДФ-глюкозы играет существенную роль в действии гликоген синтазы, выполняя функцию «рукоятки», при помощи которой фермент располагает глюкозу в полисахаридной цепи в нужном положении. Кроме того, нуклеотидная часть УДФ-глюкозы, по-видимому, необходима для узнавания субстрата при катализе.

Так как гликоген в клетке никогда не расщепляется полностью, синтез гликогена осуществляется путём удлинения уже имеющейся молекулы полисахарида, называемой «затравка», или «праймер». К «затравке» последовательно присоединяются молекулы глюкозы. Строением молекулы «затравки» как бы предопределяется тип связи, который возникает в реакции трансгли-козилирования. Таким образом, синтезируется полисахарид, аналогичный по строению с «затравочным». В состав «затравки» может входить белок гликогенин, в котором к ОН-группе одного из тирозиновых остатков присоединена олигосахаридная цепочка (примерно 8 остатков глюкозы). Глюкозные остатки переносятся гликогенсинтазой на нередуцирующий конец олигосахарида и связываются α-1,4-гликозидными связями. По окончании синтеза гликогенин остаётся включённым в гранулу гликогена.

Разветвлённая структура гликогена образуется при участии амило-1,4 →1,6-глюкозилтрансферазы, называемой ферментом «ветвления» (от англ, branching enzyme). Как только гликогенсинтаза удлиняет линейный участок примерно до 11 глюкозных остатков, фермент ветвления переносит её концевой блок, содержащий 6-7 остатков, на внутренний остаток глюкозы этой или другой цепи. В точке ветвления концевой остаток глюкозы олигосахарида соединяется с гидроксильной группой в С6 положении с образованием α-1,6-гликозидной связи. Новая точка ветвления может быть образована на расстоянии не менее 4 остатков от любой уже существующей. Таким образом, по мере синтеза гликогена многократно возрастает число ветвлений. Концы цепей служат точками роста молекулы при её синтезе и началом при её распаде.

Рис. 7-23. Синтез гликогена. 1 — глюкокиназа или гексокиназа; 2 — фосфоглюкомутаза; 3 — УДФ-глюкрпирофосфорилаза; 4 — гликогенсинтаза (глюкозилтрансфераза); 5 — фермент «ветвления» (амило-1,4 → 1,6-глюкозилтрансфераза), светлые и заштрихованные кружки — глюкозные остатки, закрашенные кружки — глюкозные остатки в точке ветвления.

Б) Распад гликогена или его мобилизация происходят в ответ на повышение потребности организма в глюкозе. Гликоген печени распадается в основном в интервалах между приёмами пищи, кроме того, этот процесс в печени и мышцах ускоряется во время физической работы.

Распад гликогена (рис. 7-25) происходит путём последовательного отщепления остатков глюкозы в виде глюкозо-1-фосфата. Гликозидная связь расщепляется с использованием неорганического фосфата, поэтому процесс называется фосфоролизом, а фермент гликогенфосфорилазой.

Так же как и синтез, расщепление гликогена начинается с нередуцирующего конца полисахаридной цепи. При этом наличие разветвлённой структуры гликогена облегчает быстрое высвобождение глюкозных остатков, так как чем больше концов имеет молекула гликогена, тем больше молекул гликогенфосфорилазы могут действовать одновременно.

Гликогенфосфорилаза расщепляет только α-1,4-гликозидные связи (реакция 1). Последовательное отщепление глюкозных остатков прекращается, когда до точки ветвления остаётся 4 мономера. Подобная особенность в действии гликогенфосфорилазы обусловлена размером и строением её активного центра.

Дальнейший распад гликогена требует участия двух других ферментов. Сначала три оставшихся до точки ветвлении глюкозных остатка переносятся при участии олигосахаридтрансферазы (реакция 2) на нередуцирующий конец соседней цепи, удлиняя её и таким образом создавая условия для действия фосфорилазы. Оставшийся в точке ветвления глюкозный остаток гидролитически отщепляется с помощью α-1,6-глюкозидазы в виде свободной глюкозы (реакция 3), после чего неразветвлённый участок гликогена может вновь атаковаться фосфорилазой.

Считают, что перенос трёх остатков глюкозы и удаление мономера из точки ветвления (реакции 2 и 3) катализирует один и тот же фермент, который обладает двумя разными ферментативными активностями — трансферазной и гликозидазной. Его называют «деветвящим» ферментом (от англ, debranching enzyme).

Продукт действия гликогенфосфорилазы — глюкозо-1-фосфат — затем изомеризуется в глюкозо-6-фосфат фосфоглюкомутазой. Далее глюкозо-6-фосфат включается в процесс катаболизма или другие метаболические пути. В печени (но не в мышцах) глюкозо-6-фосфат может гидролизоваться с образованием глюкозы, которая выделяется в кровь. Эту реакцию катализирует фермент глюкозо-6-фосфатаза. Реакция протекает в просвете ЭР, куда с помощью специального белка транспортируется глюкозо-6-фосфат. Фермент локализован на мембране ЭР таким образом, что его активный центр обращён в просвет ЭР. Продукты гидролиза (глюкоза и неорганический фосфат) возвращаются в цитоплазму также с помощью транспортных систем.

Рис. 7-25. Распад гликогена. В рамке — фрагмент гликогена с точкой ветвления. Закрашенный кружок — глюкозный остаток, связанный α-1,6-гликозидной связью; светлые и заштрихованные кружки — глюкозные остатки в линейных участках и боковых ветвях, связанные α-1,4-гликозидной связью. 1 — Гликогенфосфорилаза; 2 — олигосахаридтрансфераза; 3 — α-1,6-глюкозидаза.

Дата добавления: 2015-01-30 ; просмотров: 16 | Нарушение авторских прав

Источник

Гликоген

(от Глюкоза и . ген (См. …ген))

животный крахмал (C6H10O5) n, основной запасной углевод животных и человека, встречается также у некоторых бактерий, дрожжей и грибов. Особенно велико его содержание в печени (3—5%) и мышцах (0,4—2%). Обнаружен французским физиологом К. Бернаром в печени (1857). Г. гомополисахарид, построенный из 6—20 тыс. и более остатков α-D-глюкозы. Молекула Г. имеет разветвленное строение; средняя протяжённость неразветвлённой цепи 10—14 остатков глюкозы (рис. 1 и 2). Молярная масса Г. 10 5 —10 7 . Г. белый аморфный порошок, в растворе полидисперсен, опалесцирует. Оптически активен ([α] D= + 198°). Раствор Г. с йодом окрашивается от фиолетово-коричневого до фиолетово-красного цвета. Г. в организме расщепляется двумя способами. В процессе пищеварения под действием амилаз (См. Амилазы) происходит гидролитическое расщепление Г., содержащегося в пище. Процесс начинается в ротовой полости и заканчивается в тонком кишечнике (при рН 7—8) с образованием декстринов (См. Декстрины), затем мальтозы (См. Мальтоза) и глюкозы (См. Глюкоза). В кровь поступает глюкоза, избыток которой включается в синтез Г. и в таком виде откладывается в тканях. В клетках тканей возможно также гидролитическое расщепление Г., но оно имеет меньшее значение. Основной путь внутриклеточного превращения Г. — фосфоролитическое расщепление, происходящее под влиянием Фосфорилазы и приводящее к последовательному отщеплению от молекулы Г. остатков глюкозы с одновременным их фосфорилированием. Образующийся при этом глюкозо-1-фосфат может вовлекаться в процесс гликогенолиза (см. Гликолиз). При синтезе Г. обязательным этапом является Фосфорилирование глюкозы. Синтез происходит под действием фермента гликогенсинтетазы. В цитоплазме Г. представлен смесью разнородных по физико-химическим свойствам полисахаридов с различной молярной массой. Состав Г. может меняться в зависимости от функционального состояния ткани, времени года и др.

Содержание Г. в тканях зависит от соотношения активностей фосфорилазы и гликогенсинтетазы и от снабжения ткани глюкозой из крови. При понижении уровня сахара в крови наблюдается высокая активность фосфорилазы и происходит т. н. мобилизация Г. — исчезновение его скоплений из цитоплазмы. Наоборот, при обогащении крови глюкозой (например, после приёма пищи) преобладает синтез Г. Важную роль в поддержании постоянного уровня сахара в крови играет печень, превращая избыток глюкозы в Г. или мобилизуя его при недостатке сахара в крови. Др. органы запасают Г. лишь для собственного потребления. При этом поступающая в клетку глюкоза обычно используется для синтеза Г., который в дальнейшем расходуется как основной субстрат анаэробных превращений углеводов. Важную роль в регуляции содержания сахара в крови играет центральная нервная система. В мозговой ткани Г. мало, поэтому колебания уровня сахара в крови отражаются на обменных процессах в мозге. Направление обмена Г. в печени регулируется с помощью биологически активных веществ, при участии Гипоталамуса и симпатической нервной системы. Наиболее важны гормоны Адреналин и Глюкагон (вызывающие мобилизацию Г.) и Инсулин, стимулирующий его синтез.

Лит.: Химия углеводов, М., 1967.

Рис. 1. Схема молекулы гликогена: А — «альдегидное» начало цепи; мелкие кружки — глюкозные остатки. Пунктиром обведены границы β-декстрина; четырёхугольник — участок молекулы, формула которого приведена на рис. 2.

Рис. 2. Участок молекулы гликогена; остатки глюкозы соединены 1,4-гликозидными связями, а в точке ветвления — 1,6-гликозидной связью.

Источник

Показать больше

Похожие статьи

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Закрыть